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Low-threshold InGaAs strained-layer quantum well lasers (A = 0.98 pm) 
with GalnP cladding layers prepared by chemical beam epitaxy 

W. T. Tsang, R. Kapre, M. C. Wu, and Y. K. Chen 
‘4 T&T BeII Laboratories, Murray Hill, New Jersey 07974 

(Received 23 March 1992; accepted for publication 8 June 1992) 

We report on the InGaAs/GaAsiGaInP strained-layer quantum well (QW) lasers grown by 
chemical beam epitaxy (CBE). The single QW broad-area layers have a very low threshold 
current density of 70 A/cm2, which is among the lowest value reported for InGaAs/GaAs/ 
GaInP lasers. Ridge-waveguide lasers emitting at 0.98 pm have a continuous wave (cw) 
threshold of 7.8 mA for a 500~pm-long cavity and a differential quantum efficiency as high as 0.9 
mW/mA. Internal quantum efficiency of 0.95 and internal waveguide losses of 2.5 cm-.’ were 
obtained. Linear cw output power of 100 mW was obtained. These results demonstrate that CBE 
is capable of growing 0.98 pm InGaAs strained-layer QW lasers having performance similar to 
the best prepared by other epitaxial growth techniques. 

Strained InGaAs/AlGaAs quantum well (QW) lasers 
are currently of great interestlm9 because the emission 
wavelength can be extended to - 1.1 pm beyond the long- 
wavelength limit of -0.89 pm for GaAs/AlGaAs lasers. 
Such extension of wavelength by the addition of In to the 
GaAs active layer of GaAs/AlGaAs lasers was first pro- 
posed and demonstrated in 198 1 by Tsang. lo The recent 
importance of the InGaAs/AlGaAs lasers operating at 
0.98 pm is its suitability as the pumping source for the 
erbium-doped fiber optical amplifiers.8’9 They yield a 
lower noise figure* and higher gain coefficient” than the 
1.48 ,um InGaAsP/InP pump lasers. In addition, the 
InGaAs/AlGaAs strained QW lasers have lower threshold 
current, higher slope efficiency, and less temperature de- 
pendence. All these are particularly important for lowering 
the power dissipation of the pump design. Previously, 
AlGaAs is commonly used for cladding layers. Recently, 
Gas,11nc49P lattice-matched to GaAs was introduced as a 
substitution for the AlGaAs cladding layers.“-I3 They 
have been grown by metalorganic vapor phase epitaxy 
(MOVPE)“212 and gas-source molecular beam epitaxy 
(GSMBE).13 GacslIne49P is of interest in InGaAs lasers 
because of recent reports suggesting its superior resistance 
over AlGaAs alloys to rapid degradation by dark line de- 
fect propagation” and catastrophic mirror damage.14 In 
addition, the aluminum-free systems lend themselves more 
readily to device fabrication by selective etching and epi- 
taxial regrowth or mass transport.12 In this letter, we re- 
port on the first InGaAs/GaAs strained-layer QW lasers 
using GacsrIna49P cladding layers grown by chemical 
beam epitaxy (CBE) .15*r6 

The InGaAs/GaAs/GaInP QW lasers were grown on 
(100) n-GaAs substrates by CBE using triethylgallium 
(TEGa), trimethylindium (TMIn), and thermally decom- 
posed phosphine (PH,). Diethylzinc (DEZn) and hydro- 
gen sulfide (H2S) were used as the p-type and n-type 
doping sources, respectively. The substrate growth 
temperature was -540 “C for all the layers except the 
p-GaInP and p +-GaAs which were grown at -510 “C!. 
Lattice match of GaInP within ha/a ;5 5 x 10m4 was rela- 
tively easily obtained. However, we found that the mor- 

phology was very sensitive to substrate growth tempera- 
ture. This imposes a very stringent requirement on the 
reproducible control of growth temperature and tempera- 
ture uniformity across the wafer. Details of the growth 
conditions and the properties of GaInP will be published 
elsewhere. 

The layer structure of the InGaAs/GaAs/GaInP after 
fabricating into a ridge-waveguide structure is shown in 
Fig. 1. A 0.2 pm nf-GaAs buffer layer was grown first. A 
separate confinement heterostructure (SCH) was used 
here to provide confinement of electrical carriers as well as 
optical field. The active region consists of one, two or three 
70 A-thick Ine2Gao,sAs quantum wells and 220 A-thick 
GaAs barriers, which produce a lasing wavelength of 980 
nm. The active region is sandwiched between two 1000 
A-thick GaAs separate confinement layers. The active and 
the SCH region are cladded by GasslIno,49P layers of 
- 1.35 pm thickness. To facilitate the fabrication of ridge 
waveguide lasers, a thin GaAs stop-etch layer is inserted in 
the upper GaInP cladding layer. Ridge waveguides of 4 pm 
width were formed by selective wet chemical etching, 
which removed the GaInP material above the stop-etch 
layer. Then the etched wafer was covered by Si3N4 and a 
self-aligned process was used to define the p-contact open- 
ing on top of the ridge. Standard metallization and cleaving 
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FIG. 1. The schematic of the self-aligned ridge-waveguide InGaAs/GaAs 
quantum well laser with lattice-matched GaInP cladding layers. 
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FIG. 2. The cavity length dependence of the threshold current densities 
Jth for broad-area lasers having a single and two quantum wells. 

processes were used to finish the fabrication. 
Figure 2 shows the cavity length dependence of the 

threshold current densities Jth for broad-area lasers having 
a single and two quantum wells. A very low J& of 70 
A/cm’ was obtained for a 1500+m long single Q W  laser. 
Such Jth is among the lowest reported for InGaAs/GaAs/ 
GaInP lasers. For comparison, a Jth of 177 and 85 A/cm2 
were obtained by GSMBE13 and MOVPE,12 respectively. 
In comparison to devices with AlGaAs cladding layers, the 
present Jth is among the best values of 65 A/cm2 obtained 
by MOVPE” and -50 A/cm2 by MBE.‘8”9 

The ridge waveguide lasers have very low continuous 
wave (cw) threshold currents: 7.8 mA for 500 pm-long 
cavity and 10 mA for 750 pm-long cavity. Such values are 
lower than those obtained from similar laser structures 
grown by GSMBE.t3 A typical cw light-current character- 
istic for a 750 pm-long laser with both facets as-cleaved is 
shown in Fig. 3. External differential quantum efficiency as 
high as 0.9 mW/mA was obtained for 250 pm-long lasers. 
The inset shows the lasing spectrum at 0.98 ,um. 500+m 
long lasers were high-reflective ( .- 85% )/antireflective 
( -5%) coated. They emitted linear cw output powers up 
to 100 mW. Higher output power was possible but higher 
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FIG. 3. A typical cw light-current characteristic for a 750 ,nm-long single 
Q W  ridge waveguide (4 pm wide) laser with both facets as-cleaved. The 
inset shows the lasing spectrum. 
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FIG. 4. The inverse external differential quantum efficiency and the 
threshold current vs the cavity length for single Q W  ridge waveguide 
lasers. The extrapolated internal quantum efficiency is 95% and the in- 
ternal waveguide loss is 2.5 cm.-‘. 

transverse mode set in. Figure 4 shows the cw threshold 
currents and the inverse of external quantum efficiency for 
single Q W  ridge waveguide lasers as a function of cavity 
lengths. From the slope of inverse quantum efficiency vs 
cavity length, a  very low internal waveguide loss ai of 2.5 
cm - ’ and internal quantum efficiency vi of 0.95 were mea- 
sured. The present value of ai is close to the lowest re- 
ported. A ai of 5  and 9 cm ’ were previously reported for 
MOVPE-grown InGaAs/GaAs/AlGaAs lasers” and 
GSMBE-grown inGaAs/GaAs/GaInP lasers,13 respec- 
tively. Figure 5 shows the temperature dependence of cw 
threshold currents and external quantum efficiencies of a  
750~pm long ridge waveguide laser as a function of heat- 
sink temperature. The diode was bonded p  side up on cop- 
per heat-sink. A threshold-temperature dependence coeffi- 
cient, To of 90 K was measured. At 100 “C the external 
quantum efficiency stayed at -0.8 mW/mA. 

In summary, we reported on the InGaAs/GaAs/ 
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FIG. 5. The temperature dependence of the cw threshold currents and 
external quantum efficiencies of a 750 pm-long single quantum well ridge 
waveguide laser. 
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GaInP strained-layer quantum well lasers grown by CBE. 
The single QW broad-area lasers have a very low threshold 
current density of 70 A/cm*, among the lowest value re- 
ported for InGaAs/GaAs/GaInP lasers. Ridge-waveguide 
lasers emitting at 0.98 ,um have a cw threshold of 7.8 mA 
for a 500 pm-long cavity and a differential quantum effi- 
ciency as high as 0.9 mW/mA. Internal quantum efficiency 
of 0.95 and internal waveguide losses of 2.5 cm-’ were 
obtained. Linear cw output power of 100 mW was ob- 
tained. These results demonstrate that CBE is capable of 
growing 0.98 pm InGaAs strained-layer QW lasers having 
performance similar to the best prepared by other epitaxial 
growth techniques. 
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